
regression - When should I use lasso vs ridge? - Cross Validated
Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values …
regression - Converting standardized betas back to original …
I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.
regression - When is R squared negative? - Cross Validated
Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …
regression - Linear vs Nonlinear Machine Learning Algorithms
Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression …
Linear regression what does the F statistic, R squared and residual ...
Jan 17, 2017 · Software like Stata, after fitting a regression model, also provide the p-value associated with the F-statistic. This allows you to test the null hypothesis that your model's …
How should outliers be dealt with in linear regression analysis ...
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
What is the difference between logistic and logit regression?
Oct 17, 2014 · The question is asking for the difference between logit and logistic regression. If the parameters returned are less comprehensive or more comprehensive isn't going to render …
regression - Difference between forecast and prediction ... - Cross ...
I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …
regression - Interpreting the residuals vs. fitted values plot for ...
Consider the following figure from Faraway's Linear Models with R (2005, p. 59). The first plot seems to indicate that the residuals and the fitted values are uncorrelated, as they should be in a
regression - Trying to understand the fitted vs residual plot?
Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …